viernes, 1 de mayo de 2015

HISTORIA DEL OXÍGENO

Uno de los primeros experimentos conocidos sobre la relación entre la combustión y el aire lo desarrolló el escritor sobre mecánica de la Antigua Grecia Filón de Bizancio, en el S. II a. C. En su obra Pneumatica, Filón observó que invirtiendo un recipiente sobre una vela prendida y rodeando el cuello de este con agua, una parte del líquido subía por el cuello. Supuso, de forma incorrecta, que algunas partes del aire en el recipiente se convertían en elemento clásico del fuego y, entonces, era capaz de escapar a través de poros en el cristal. Muchos siglos después, Leonardo da Vinci observó que una porción del aire se consume durante la combustión y la respiración.

A finales del S. XVII, Robert Boyle probó que el aire es necesario para la combustión. El químico inglés John Mayow perfeccionó su trabajo mostrando que solo requería de una parte del aire, que llamó spiritus nitroaereus o simplemente nitroaereus. En un experimento, descubrió que, colocando tanto un ratón como una vela encendida en un contenedor cerrado sobre agua, hacía que esta subiera y reemplazara un catorceavo del volumen del aire antes de que se apagara la vela y muriera el ratón. Debido a esto, supuso que el nitroaereus se consume tanto por la respiración como por la combustión.

Robert HookeOle BorchMijaíl Lomonósov y Pierre Bayen produjeron oxígeno durante experimentos entre los siglos XVII y XVIII, pero ninguno de ellos lo reconoció como un elemento
Luego el farmacéutico sueco Carl Wilhelm Scheele,  produjo oxígeno gaseoso calentando óxido de mercurio y varios nitratos alrededor de 1772. Scheele llamó al gas «aire del fuego», porque era el único apoyo conocido para la combustión
Entre tanto, el 1 de agosto de 1774, el clérigo británico Joseph Priestley condujo un experimento en el que enfocó la luz solar sobre óxido de mercurio (II) (HgO) en el interior de un tubo de cristal, que liberó un gas que él llamó «aire desflogisticado».Notó que las velas prendían más vívamente en el gas y que el ratón estaba más activo y vivía más tiempo mientras lo respiraba. Tras inhalar él mismo el gas, escribió: «La sensación del gas en mis pulmones no era perceptiblemente diferente al del aire normal, pero sentí mi pecho particularmente ligero y desahogado durante un rato después».Debido a que publicó sus hallazgos primero, Priestley suele ser considerado el autor del descubrimiento.
El renombrado químico francés Antoine Lavoisier reclamó posteriormente haber descubierto la sustancia de forma independiente. Aunque fue cuestionado en su época, Lavoisier condujo los primeros experimentos cuantitativos adecuados sobre la oxidación y dio la primera explicación correcta acerca del funcionamiento de la combustión.Usó estos y otros experimentos similares que comenzaron en 1774 para desacreditar la teoría del flogisto y para demostrar que la sustancia descubierta por Priestley y Scheele era un elemento químico.
Lavoisier renombró al «aire esencial» como oxígeno en 1777, desde las raíces griegas

PROPIEDADES FÍSICAS Y QUÍMICAS DEL OXÍGENO


PROPIEDADES QUÍMICAS

Nombre: Oxigeno
Símbolo: O
Numero atómico: 8
Masa atómica: 15.9994
Estado estándar: gas a 298 K
Color: En estado gaseoso es incoloro, 
mientras que en estado líquido es de color azul pálido. 
Clasificación: No metálico


PROPIEDADES FÍSICAS

Densidad: 1,429 kg/m3
Punto de fusión: 50,35 K (-223°C)
Punto de ebullición: 90,18 K (-183°C)
Entalpía de evaporización: 3,4099 kJ/ mol
Entalpía de fusión: 0,22259 kJ/ mol
Volumen molar: 17,36 × 10-3 m3/mol


USOS Y APLICACIONES

El oxígeno tiene diversos múltiples funciones en nuestro mundo, desde algo tan elemental como la respiración, hasta aplicaciones en la ciencia:

Respiración: Las plantas y animales dependen del oxígeno para respirar. Los humanos y animales inhalan oxígeno a los pulmones, o en el caso de los anfibios, a través de las branquias o la piel. El oxígeno le da energía a las células de la sangre antes de ser liberado como dióxido de carbono.

En medicina: Suministrándolo como suplemento a pacientes con dificultades respiratorias,El tratamiento no solo incrementa los niveles de oxígeno en la sangre del paciente, sino que tiene el efecto secundario de disminuir la resistencia al flujo de la sangre en muchos tipos de pulmones enfermos, facilitando el trabajo de bombeo del corazón. La oxigenoterapia se usa para tratar el enfisema, la neumonía, algunas insuficiencias cardíacas, algunos desórdenes que causan una elevada presión arterial pulmonar y cualquier enfermedad que afecte a la capacidad del cuerpo para tomar y usar el oxígeno y se emplean botellas de oxígeno en diversas prácticas deportivas como el submarinismo o laborales, en el caso de acceder a lugares cerrados, o escasamente ventilados, con atmósferas contaminadas.



















En cohetes: En su forma líquida, el oxígeno es usado como un agente desoxidante en misiles y cohetes. El tanque exterior de gasolina que se usa para elevar a una nave espacial fuera del atmósfera contiene cerca de 145.000 galones de oxígeno líquido (548 884 litros) y cerca de 390.000 galones de hidrógeno líquido (1.476.310 litros). Los dos elementos reacciones en los motores principales para generar un impulso máximo de 512.000 libras (232.239 kilos).





Metalurgia: La producción del acero depende del oxígeno. Se usa en un horno alto para convertir el carbono en dióxido de carbono, lo que reduce el óxido de hierro en hierro puro. El oxígeno también es usado en los sopletes de corte y soldadura. El oxígeno reacciona con el hidrógeno o el acetileno en los sopletes, los que se pueden calentar a más de 5.000 grados F (2760 grados centígrados). Estos sopletes pueden cortar o soldar la mayoría de metales.


Ciencia: Los paleoclimatólogos miden la relación entre el oxígeno-18 y el oxígeno-16 en los esqueletos y exoesqueletos de los organismos marinos para determinar cómo era el clima hace millones de años. Las moléculas de agua de mar que contienen el isótopo más ligero, el oxígeno-16, se evaporan a un ritmo ligeramente mayor que las moléculas que contienen oxígeno-18 (un 12 % más pesado); esta disparidad se incrementa a bajas temperaturas. En periodos con una temperatura global más baja, la nieve y la lluvia procedentes de esa agua evaporada tienden a ser más ricas en oxígeno-16, mientras que el agua marina que queda tiende a serlo en oxígeno-18. Los organismos marinos, por tanto, incorporan más oxígeno-18 en sus esqueletos y exoesqueletos de lo que harían en un medio más cálido. Los paleoclimatólogos también miden directamente esta relación en las moléculas de agua de muestras de núcleo de hielo que se han coservado durante varios cientos de miles de años.

Los geólogos planetarios han medido las diferencias en la abundancia de isótopos de oxígeno en muestras de la Tierra, la Luna,Marte y meteoritos, pero no han estado lejos de poder obtener valores de referencia para las relaciones entre isótopos del Sol, que se creen iguales a aquellas de la nebulosa protosolar. Sin embargo, el análisis de una oblea de silicio expuesta al viento solar en el espacio y devuelta a la Tierra por la sonda Génesis desveló que el Sol tiene una proporción de oxígeno-16 mayor que nuestro planeta. La medición implica que un proceso desconocido agotó el oxígeno-16 del disco protoplanetario del Sol antes de la fusión de los granos de polvo que formaron la Tierra

PRINCIPALES REACCIONES

La combustión y el oxígeno:

En la combustión una sustancia química reacciona rápidamente con oxígeno produciendo calor y luz. Los productos típicos de una reacción de combustión son CO2, H2O, N2 y óxidos de cualquier otro elemento presente en la muestra original.

Un ejemplo típico de combustión es la oxidación del metano según el proceso

Las reacciones de combustión a menudo transcurren mediante la formación de radicales libres, moléculas o iones electrónicamente excitados que emiten fluorescencia dando color a la llama, o también formando pequeñas partículas de sólido (ejem. carbón) cuya incandescencia puede observarse.

La combustión es un proceso muy importante en nuestras vidas pues los combustibles se usan como fuente de energía, gasolina, gas, etc., en los medios de transportes, coches, aviones o en los hogares o industrias.


La reacción del oxígeno para formar ozono (O3)

El Gas oxígeno no reacciona con sí mismo o con nitrógeno en condiciones normales. Sin embargo, el efecto de la luz ultravioleta sobre el gas oxígeno es formar el ozono (gas azul), el segundo alótropo del oxígeno. La molécula de ozono está compuesta por tres átomos de oxígeno, formada al disociarse los dos átomos que componen el gas de oxígeno. Cada átomo de oxígeno liberado se une a otra molécula de oxígeno gaseoso (O2), formando moléculas de ozono (O3).



Solubilidad del oxigeno con el agua

El oxígeno es más soluble en agua que el nitrógeno; esta contiene aproximadamente una molécula de O2 por cada dos moléculas de N2, comparado con la proporción en la atmósfera, que viene a ser de 1:4. La solubilidad del oxígeno en el agua depende de la temperatura, disolviéndose alrededor del doble (14,6 mg•L−1) a 0 °C que a 20 °C (7,6 mg•L−1). A 25 °C y 1 atmósfera de presión, el agua dulce contiene alrededor de 6,04 ml  de oxígeno por litro, mientras que el agua marina contiene alrededor de 4,95 ml por litro.

La reacción del oxígeno con los halógenos
La irradiación de una presión baja (10-20 mm Hg) mezcla de oxígeno , O2, y flúor , F2, gases a baja temperatura ( 77 a 90 K ) proporciona el difluoruro de dioxígeno gas.

O2(g) + F2(g) → F2O2(g)

PROBLEMAS AMBIENTALES

Combustión y otros riesgos

Las fuentes de oxígeno que están altamente concentradas estimulan una rápida combustión. Los riesgos de fuego y explosión se dan cuando los oxidantes concentrados y los combustibles se sitúan demasiado cerca entre sí; sin embargo, la ignición, ya sea por el calor o por una chispa, es necesaria para iniciar la combustión. El oxígeno en sí mismo no es un combustible, sino un oxidante. Los riesgos de la combustión también se aplican a compuestos de oxígeno de alto potencial oxidante, como los peróxidos, cloratos, nitratos, percloratos y dicromatos, porque pueden dar oxígeno al fuego.

El O2 concentrado permite una combustión rápida y enérgica. Las tuberías y los recipientes de acero usados para almacenar y trasmitir tanto el oxígeno líquido como el gaseoso actúan como combustible; por tanto, el diseño y la fabricación de los sistemas de O2 requieren una atención especial para asegurar que las fuentes de ignición se minimizan. El incendio que acabó con la vida de la tripulación del Apolo 1 en una prueba en la plataforma de lanzamiento se extendió tan rápidamente debido a que la cápsula estaba presurizada con O2 puro, pero a una presión ligeramente mayor que la atmosférica, en lugar de una presión de 1/3 de la normal que debía usarse en la misión.

En caso de un derrame de oxígeno líquido, si este llega a empaparse en materia orgánica como madera, productos petroquímicos y asfalto puede provocar que estos materiales detonen de forma impredecible al sufrir un impacto mecánico posterior.Al igual que otros líquidos criogénicos, en contacto con el cuerpo humano puede causar congelamiento en piel y ojos.

BIBLIOGRAFÍA

http://www.webelements.com/oxygen/

http://www.investigacionyciencia.es/blogs/fisica-y-quimica/10/posts/la-combustin-y-el-oxigeno-10170

http://www.webelements.com/oxygen/chemistry.html

http://es.wikipedia.org/wiki/Oxígeno

F.A. Cotton y G. Wilkinson, Química Inorgánica Avanzada, Editorial Limusa, 1976.

Rayner-Canham, Geoff, Química inorgánica descriptiva, 2da. edición. PEARSON EDUCACIÓN, México, 2000.